Capacity Building workshop Energy efficiency improvements in compressed air and cooling water systems

27th February 2018 at Indore

Under the project Capacity Building of Local Service Providers (LSPs)

Supported by GEF-UNIDO-BEE Project Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Table of contents

WORKSHOP SUMMARY	1
Overview of workshop	1
Summary of points discussed in the meeting	1
Feedback forms	2
Suggestions by participants	2
Learning's by participants	2
ANNEXURE 1: AGENDA OF THE PROGRAM	3
ANNEXURE 2: LIST OF PARTICIPANTS	5
ANNEXURE 3: SELECTED PHOTOGRAPHS OF THE EVENT	11
ANNEXURE 4: SAMPLE FEEDBACK FORMS	13

Overview of workshop

Capacity Building workshop of Local Service Providers (LSPs) on Energy efficiency improvements in compressed air systems and cooling water systems was organized by TERI on 27th February 2018, Tuesday in association with IIF Indore Chapter under GEF-UNIDO project. Total 22 participants were present during the workshop and for the industry visit, which was organized after the workshop. Agenda of the workshop and list of participants are attached in the annexure 1 and annexure 2 respectively.

Summary of points discussed in the meeting

Mr. Nilesh Shedge welcomed the participants and thanked all the participants. He briefed about the topics which were going to be presented during workshop.

Mr. C Harinarayan also welcomed the participants and TERI team. He mentioned that, after induction furnace, air compressor and cooling water systems consumes most of the power in a typical foundry and most of the power and energy losses are observed in these systems. He encouraged participants to take advantage of TERI experts during workshop, which are made available by UNIDO for capacity building of LSPs.

Mr. Vivek Sharma gave descriptive presentation on cooling water systems in induction furnace and how the losses occur in the pumps. He shared his experiences in Rajkot foundry cluster and gave examples of successful case studies in pumping system. He talked about the maintenance check points for cooling water circuit. He also introduced new technologies available in pumps and cooling towers and encouraged participants to adopt these technologies to achieve significant energy savings.

Mr. Nilesh Shedge gave detailed presentation on air compressor systems and shared actual case studies of implementation of new technologies in air compressors done by TERI in foundries. He talked about the different components of compressed air systems like dryers, air piping, receiver tanks and their significance in the overall system efficiency. He highlighted that air compressors are the most inefficient systems and proper sizing of the machines along with regular checks on air leakages in the plants are important points to avoid losses.

After the lunch, plant tour through the M/s Pioneer Engineering Industries was arranged, so that on site discussion about the presented systems can be done with the participants to enhance the learning experience. Workshop went in a very interactive way, participants asked many questions and TERI team as well as LSPs present satisfied those queries. In the end, Mr. Nilesh Shedge gave vote of thanks and expressed his gratitude to M/s Pioneer Engineering for offering their facility for workshop. He also thanked all the participants for taking a day for the workshop. Selected photos of the workshop and visit are attached in the annexure 3.

Feedback forms

Based on the analysis of the feedback forms received from the participants, it is observed that workshop was well received by the participants and 100% participants were satisfied with Q&A session and training module provided to them. Around 50% of participants rated training schedule and industrial site visit as "Excellent". More than 40% participants have rated overall program as "Excellent" while rest of them have rated it as "Good". About 60% of participants were satisfied with arrangements made and have rated industrial visit as "Good". Few sample feedback forms are attached in the annexure 4.

Analysis of feedback forms

Suggestions by participants

Some participants have made suggestions as follows;

- 1) Training modules in local language like Hindi
- 2) More videos should be included in presentation

Learning's by participants

Some of the topics learned by the participants and mentioned by them are listed below;

- 1) Sizing of air receiver
- 2) Air pipe selection
- 3) Latest technologies in air compressor and pumps
- 4) Importance of air dryer and its sizing
- 5) Significance and losses occurring due to air leakages
- 6) Air pressure reduction
- 7) Energy monitoring is equally important

Annexures

Annexure 1: Agenda of the program

Capacity building workshop Energy efficiency improvements in compressed air and cooling water systems

Tuesday, 27 February 2018

Pioneer Engineering Industries, 75/8-9, Industrial Area, Maxi Road, Ujjain

Under the project:

Capacity Building of Local Service Providers (LSPs)

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Agenau

10:00 - 10:30	Registration
10:30 - 10:40	Welcome Address
	Mr C Harinarayan, Chairman, IIF-Indore Chapter
10:40 - 10:50	GEF-UNIDO-BEE project and initiatives in Indore cluster
	Mr Prabhat Sharma, UNIDO Cluster Leader - Indore
10:50 – 11:50	Energy efficiency improvement opportunities in induction furnace cooling water system Mr Vivek Sharma, TERI
11:50 - 12:50	Energy efficiency improvement opportunities in compressed air system
	Mr Nilesh Shedge, TERI
12.45 - 13:00	Q&A
13:00 - 14:00	Lunch
14:00 - 16:00	Site Visit / On-site training
	Visit to Pioneer Engineering Industries
16.00 - 16:30	Feedback from participants
16:30 - 16:45	Vote of thanks

Organized by

Annexure 2: List of participants

S. No	Name	Organization	Mobile No	Email ID
1.	Ranjeet Yadav	pioneer engineering	9630089074	
		Ujjain		
2.	Sunil Soner	Agaitic Group	9589444534	Suneelsoner007@gmail.com
3.	Sugash Pandey	Jash Engineering Limited	9039512126	
4.	Vijay Verma	Jash Engineering Limited	9929291092	
5.	Sangram Patil	Jash Engineering Limited	7869962233	sangram@jashindia.com
6.	Jay Singh	Jash Engineering Limited	8975003057	
7.	A N Pandey	pioneer engineering	7389941905	Anpandey1963@gmail.com
8.	Charnjeet Singh	pioneer engineering	9630079099	pioneerujain@gmail.com
9.	L D Amin	Jash Engineering Limited	9755416000	lda@jashindia.com
10.	Hari Narayan	Pioneer engineering	9630079091	pioneerengg@gmail.com
		Ujjain		
11.	Vikas Sharma	RCS Indore	9431334442	
12.	Suresh Upadhyay	Resource Combine,	9303234414	sureshupadhyay@gmail.com
		Indore		
13.	Aniya Kumar	Hira Industries	8109226468	
14.	Abdul Khan	Talati Tools	9993655886	abdulkhan@talatitools.co.in
15.	Mukesh K	Talati Electric	9993688866	mukesh@talatitools.co.in
16.	Rajdeo Sah	Infinite Solutions	9583182981	rajdeo@infisolutions.org
17.	Saji Joy	JMA Alloys	9826305078	jmaiyn@gmail.com
18.	Sanjay S	PIE	7389941902	
19.	Dharmendra	Emerald Indra	9926067886	
	Sharma			
20.	Prabhat Sharma	GEF-UNIDO-BEE	7470379107	cl.indorecluster@gmail.com
21.	Vivek Sharma	TERI	9850366248	Vivek.sharma@teri.res.in
22.	Nilesh Shedge	TERI	9978601047	Nilesh.shedge@teri.res.in

Capacity building workshop

Energy efficiency improvements in compressed air and cooling water systems

27 February 2018, Pioneer Engineering Industries, 75/8-9, Industrial Area, Maxi Road, Ujjain

S. No	Name	Organization	Mobile No	Email ID	Signature
1.	RanJeet Yachur	Pioneer Engg. Wjaim	96300 89074		Rt-
2.	sund somer	Admitity mectico.	9589444534	Sunectsonerood@gmuid Suless @asiaiticgroups	ang s
3.	Suyash Pandey	Jash Ergg Ud.	9039512126		Sugash
4.	VIJAN NERMA	Such Elgg. Ltd.	9929291092		AL
5.	Sangiam Patil	Jash Eng. Ctd.	7869962233	sangeam Qjashindia.com	glaty
6.	JAY SENGH	JASH Engg. LTD.	8975003057		stol
7.	A.N. Budy	Pioneer Engg. Wijcim	7389941905	an pandy 1963@ gmail. com	Malualy

7

τ.

13

. No	Name	Organization	Mobile No	Email ID	Signature
8.	Charanja Sugl	Pioneer En Ind.	96300 7903	piener un erral	in la
9.	L. A. Annin	JASH Engineering Ltd	9755416000	Ha QJash midder, com	hr.
10	Harrinaraya	Pionen Sujg. 2-1	96300 79091	pioneerin Ogness, Com	
11	vncash sharma	RCS Indore	9431334442		Gors
12	SURESH UPROHYMY	Resource Combine Indore	9303234414	gmail.con	-253
13	AnilyA KUMAR	HIRA INDUSA	\$ 8109226468.		fardasi.
14	Abdul Khan	Talati (Ingessollhan	9993655888	abdulkhan @	roul
15	Mukeph Katufon	Tolati Electric	99936888866	~co.in	Thigh .
16	Rajteo sal	Infilite Solutions , Ind	e 9583182981	Rajdeo e infi Edutionis. og	o doplach
17	sayi Jay	1 MA AllONS	982630507-8	Jmaugh@gmail.com	en

1 /

.

S. No	Name	Organization	Mobile No	Email ID	Signature
18	Sanfay Sebuli	Pie	7383941902	-	gll.
19	Dharmerdon Shen	Emerald lagra	9926067886		John
20	Prabhat Sharma	GEF- UNDO - BEE	7470571107	Chindore cluster Q	BL
21	Vivek. Shalma	TERI	9850366248	Vivek . Shanma e tering	K
22	Nilen. she dge	JEEL	9978601047	nilest. stude e tering	R
23					
24		<i>'</i>			
25		64			
26					
27.					

teri

Annexure 3: Selected photographs of the event

Annexure 4: Sample feedback forms

Capacity building workshop

Energy efficiency improvements in compressed air and cooling water systems

Tuesday, 27 February 2018

Pioneer Engineering Industries, 75/8-9, Industrial Area, Maxi Road, Ujjain

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?			
How was the training schedule and agenda?	· ~		
How was the industrial site visit?			N 0 4
Do you think that adequate time was provided for each topic?	Yes [No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [1	No	[]
Do you think that the background training manual is informative and useful enough?	Yes [1	No	[]
Do you think that the discussion on EE/RE will help you in your work?	Yes [No	[]]
Suggestions & Recommendations for improvement:	p. Cp ?	Jour St	overvo
Suggestions & Recommendations for improvement: <u>Fam</u> <u>Sustiticutu</u> <u>Endroduction</u> , your cir <u>consultion</u> iam Guil T	D. CD L Leagurt. Hagk Jo	Pour St Poure Horsel,	overuo V
Suggestions & Recommendations for improvement: <u>Pam</u> <u>Sustiticutu</u> <u>Consuption</u> <u>Gur</u> <u>Cer</u> <u>Consuption</u> <u>Cam</u> <u>Gur</u> Name two learning, which from this programme you will be able to im <u>Davo</u> <u>thinking</u> <u>and</u> <u>Syltum</u> , <u>and</u> <u>fon</u> <u>yer</u> <u>Con</u>	D. CN L Leagury Hank Jo Hank Jo plement in your plant? Pool-cr	Jour St Powe Horsel Ney. C Redue	Ductus D Maryis K 28

Capacity building workshop

Energy efficiency improvements in compressed air and cooling water systems

Tuesday, 27 February 2018

Pioneer Engineering Industries, 75/8-9, Industrial Area, Maxi Road, Ujjain

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Parameter	Feedback		-
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?	\checkmark		
How was the training schedule and agenda?	5		
How was the industrial site visit?	\sim		
Do you think that adequate time was provided for each topic?	Yes [No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [No	[]
Do you think that the background training manual is informative and useful enough?	Yes [VT	No []	
Do you think that the discussion on EE/RE will help you in your work?	Yes [No []	
Suggestions & Recommendations for improvement: Thip if the Vary Halping Raogre	sm. Iway	senjoy	Thip
Suggestions & Recommendations for improvement: Thip if the Vary Haping Ragge pageam. Name two learning, which from this programme you will be able to impl	ement in your plant?	enjoy	Thip
Suggestions & Recommendations for improvement: This if the Vary Haking Ragges page and Name two learning, which from this programme you will be able to impl	ement in your plant?	o enjoy	Thip
Suggestions & Recommendations for improvement: Thip if the Vary Haking Ragge page on . Name two learning, which from this programme you will be able to impl	297)。 ていみ	o enjoy	Thip
Suggestions & Recommendations for improvement: This is the vary Haking Ragge page and Name two learning, which from this programme you will be able to impl	ement in your plant?	s enjoy	Thip
Suggestions & Recommendations for improvement: This if the Vary Haking Ragges page and Name two learning, which from this programme you will be able to impl	ひかっ ていみ	o enjoy	Thip
Suggestions & Recommendations for improvement: Thip if the Vary Haking Ragges pagaam. Name two learning, which from this programme you will be able to impl Signature:	ement in your plant?	o enjoy	Thip
Suggestions & Recommendations for improvement: This is the Vary Haking Ragges page and Name two learning, which from this programme you will be able to impl Signature: Name of participant: The Kepb Katayon	ement in your plant?	o enjoy	Thip
Suggestions & Recommendations for improvement: This is the vary Haking Ragges page of the vary Haking Ragges Name two learning, which from this programme you will be able to impl Signature: Katuyo Name of participant: The Kepb Katuyos Organization: Talatic Electoric was the Mabile No: 2000 How Washington	ement in your plant?	entoy	Thip

Capacity building workshop

Energy efficiency improvements in compressed air and cooling water systems

Tuesday, 27 February 2018

Pioneer Engineering Industries, 75/8-9, Industrial Area, Maxi Road, Ujjain

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Parameter	Feedback		「北京市市
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?			
How was the training schedule and agenda?		V	
How was the industrial site visit?	08		
Do you think that adequate time was provided for each topic?	Yes []	No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [V]	No	[]
Do you think that the background training manual is informative and useful enough?	Yes [No	[]
Do you think that the discussion on EE/RE will help you in your work?	Yes	No	[]
Name two learning, which from this programme you will be able to im	plement in your plant	2	
Name two learning, which from this programme you will be able to im Compresses an pipe line Looping (plement in your plant Clabing System	? ~~)	
Name two learning, which from this programme you will be able to im Compressed an pipe line Looping (Signature: Name of participant: Organization: Mobile No: F1389941908 Email ID: 9n pandy 1963 @ 9 mai Organized by	plement in your plant Clabing System . M.P L. COM	2	

Capacity building workshop

Energy efficiency improvements in compressed air and cooling water systems

Tuesday, 27 February 2018

Pioneer Engineering Industries, 75/8-9, Industrial Area, Maxi Road, Ujjain

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Iow would you rate the overall programme? Iow would you rate overall arrangements? Iow was the training schedule and agenda?	Excellent	Good	1998 - 1154
low would you rate the overall programme? low would you rate overall arrangements? low was the training schedule and agenda?	Excellent	Good	and the second se
low would you rate the overall programme? low would you rate overall arrangements? low was the training schedule and agenda?	~	111 11	Average
low would you rate overall arrangements? low was the training schedule and agenda?	1/	V	
low was the training schedule and agenda?	V		
	\checkmark		
low was the industrial site visit?	V		
to you think that adequate time was provided for each topic?	Yes [🗸]	No	[]
o you think that satisfactory answers were given to your questions uring the training programme?	Yes [🗸]	No	[]
o you think that the background training manual is informative and seful enough?	Yes [🗸]	No	[]
o you think that the discussion on EE/RE will help you in your work?	Yes [🗸]	No	1
ame two learning, which from this programme you will be able to imple i) Optimize the Comptessel efficient ii) Selection of pump according	ement in your planti w. gJ +0 hoas	, I and flo	w Sate
gnature: Suyesh ame of participant: Suyesh Pandey			

Annexure 5: Copy of presentations

Energy efficiency improvement opportunities in induction furnace cooling water system

Capacity building workshop Energy Efficiency and Renewable Energy Technologies **Tuesday, 27th Feb 2018** Indore

MSME Foundry

Pump and pumping system

Power consumption (kW)

- · Usually lower than rated power
- · Near to or higher than rated if re-winded

Flow rate (cu.m/hour)

 Most cases it was lower than design, few cases < 60% of design flow rate

Head (m)

Most cases pressure gauges found not functioning

Optimizing piping design

Water velocity ~ 1.8 – 2.0 m/s

3

Approach

Design data

- ✓ Flow rate, m³/hour
- ✓ Design head, m
- ✓ Rated power, kW

Performance assessment

- ✓ Estimation of hydraulic power
- ✓ Efficiency of pump

- Hydraulic power
- Overall system efficiency = Hydraulic power, kW/ motor power, kW
- Pump efficiency, %=Overall efficiency/motor efficiency
- > Operating point on the Pump system curve

Pumping system

Parameters to be measured/monitored

- Suction head and discharge head (Pressures), bar
- Pump motor power, kW
- ► Water flow, m³/hr
- Frequent check of impeller and motor bearings

- pressures, bar
- Single phase power meter, kW

Selection and sizing – Before installation

Selection and sizing – Before installation

1.Each centrifugal pump has a BEP at which its operating efficiency is highest and its radial bearing loads are lowest.

2.At or near its BEP, a pump operates most cost effectively in terms of both energy efficiency and maintenance

3. Selecting a pump with a BEP that is close to the system's normal operating range can result in significant operating cost savings.

Selection and Pipe sizing – Before installation

1. KEEP SUCTION PIPING AS SHORT AS POSSIBLE

2. PIPE DIAMETER ON SUCTION SIDE SHOULD BE EQUAL OR ONE SIZE LARGER THAN PUMP INLET

Selection and Pipe sizing – Before installation

3.ELIMINATE ELBOWS MOUNTED ON OR CLOSE TO THE INLET NOZZLE OF THE PUMP (I.E TO AVOID BENDS IN SUCTION PIPES TO ELIMINATE PRESSURE DROP)

Pumping System

Pressure guage for pressure indication

Selection and Foot valve – Before installation

Foot Valve Location

Foot Valve Location	Recommended Foot Valve Installation:
Max. 25 feet or less below	Install Foot Valve in a vertical position for best and most
pump suction inlet	efficient operation.

Pumping System

• Eliminate unnecessary uses

F F#: N	Typical % improvement in energy efficiency over current Pump system efficiency practice			
Lifergy Efficiency Measure	% Improvement over LOW eff. base case	% Improvement over MED eff. base case	% Improvement over HIGH eff. base case	
Use pressure switches to shut down unnecessary pumps	10.0%	5.0%	2.0%	
Isolate flow paths to nonessential or non- operating equipment	20.0%	10.0%	5.0%	

Pumping system

	Typical % improvement in energy efficiency over current Pump system efficiency practice			
Energy Efficiency Measure	% Improvement over LOW eff. base case	% Improvement over MED eff. base case	% Improvement over HIGH eff. base case	
Fix Leaks, damaged seals, and packing	3.5%	2.5%	1.0%	
Remove scale from components such as heat exchangers and strainers	10.0%	5.0%	2.0%	
Remove sediment/scale buildup from piping	12.0%	7.0%	3.0%	

Pumping system

✓ For variable loading, like in case of pump with a variable load can reduce it flow by lowering its RPM and generate substantial saving

Pumping System

 Meet variable flow rate requirement w/o throttling or bypass

	Typical % improvement in energy efficiency over current Pump system efficiency practice			
Energy Emiciency Measure	% Improvement over LOW eff. base case	% Improvement over MED eff. base case	% Improvement over HIGH eff. base case	
Install variable speed drive	25.0%	15.0%	10.0%	
Replace pump with more energy efficient type	25.0%	15.0%	5.0%	
Replace motor with more energy efficient type	5.0%	3.0%	1.0%	
Initiate predictive maintenance program	12.0%	9.0%	3.0%	

Pumping System

Common Problem	Potential Measures to Improve Efficiency
Unnecessary demand on pumping system	Reduce demand on system
Oversized pumps	Select pump that operates near to BEP
	Change impeller
	Trim impeller
	Fit multiple-speed pump
	Use multiple-pump arrangements
	Fit lower speed pump/ motor
Pump wear	Pump maintenance
Less efficient impeller	Change impeller
Inefficient pump throttling controls	As for oversized pumps
	Fit adjustable or variable-speed drive
Inefficient piping configuration	Change piping inefficiencies
Oversized motor	Change motor
Inefficient motor	Change to high-efficiency motor
Lack of monitoring and/ or documentation	Install monitoring and conduct survey

Pumping System

ECM:Replacement of monoblock pump with EE monoblock multistage pump for coil cooling

Recommended Pump Specification	Units	Coil cooling pump for Furnace
Flow rate	m³/hour	14.4
Differential Head	m	40.0
Efficiency	%	51.1%
Power proposed pump	kW	3.07
Power saving	kW	1.43
Operating period	hour	4,800
Annual Energy saving	kWh/year	6,856
Cost saving		
Annual Monetary Saving	Rs lakh / year	0.42
Investment	Rs lakh	0.55
Simple Payback Period	years	1.3

Pumping System

High efficiency Pump Flow characteristic is improved and power consumption reduced

21

Replacement of old single stage pump with new EE horizontal multistage pump

Pumping System

Old inefficient monoblock pump

Energy efficient multistage monoblock pump

Air inlet: This is the point of entry for the air entering a tower. The inlet may take up an entire side of a tower–cross flow design– or be located low on the side or the bottom of counter flow designs.

Louvers: Generally, cross-flow towers have inlet louvers. The purpose of louvers is to equalize air flow into the fill and retain the water within the tower. Many counter flow tower designs do not require louvers.

Nozzles: These provide the water sprays to wet the fill. Uniform water distribution at the top of the fill is essential to achieve proper wetting of the entire fill surface. Nozzles can either be fixed in place and have either round or square spray patterns or can be part of a rotating assembly as found in some circular cross-section towers.

Fans: Both axial (propeller type) and centrifugal fans are used in towers. Generally, propeller fans are used in induced draft towers and both propeller and centrifugal fans are found in forced draft towers. Depending upon their size, propeller fans can either be fixed or variable pitch.

A fan having non-automatic adjustable pitch blades permits the same fan to be used over a wide range of kW with the fan adjusted to deliver the desired air flow at the lowest power consumption. Automatic variable pitch blades can vary air flow in response to changing load conditions.

Counterflow Tower

Cooling Tower

Crossflow Design

Counterflow Design

Cooling Tower

Operating Parameters of Cooling tower

S No	Parameter
1	Ambient dry bulb temperature (°C)
2	Ambient wetbulb temperature (°C)
3	Average Cooling water inlet temperature (°C)
4	Average Cooling water outlet temperature (°C)
5	Average Cooling duty water flow rate (m³/hour)

27

Performance assessment of cooling tower

Range = Entering cooling water temperature(return from process) – Leaving water temperature (supply to process) High range means good performance of cooling tower

Approach = Leaving cooling water temperature – Ambient wet bulb temperature Low Approach means good performance of cooling tower

Effectiveness = Range /(Range+ Approach) High effectiveness means good performance of cooling tower

Heat rejected in TR = (Mass flow rate x specific heat x range)/3024 High cooling capacity means good performance of cooling tower

29

Energy efficiency opportunities in cooling tower

- 1.Selecting a cooling tower (Approach closer to WBT)
- 2.Fills
- 3.Pump and water distribution system
- 4. Fan and Motors

Cooling Tower

1. The fill is merely a media by which more water surface is caused to be exposed to the air(increasing the rate of heat transfer), and which increases the time of air-water contact by retarding the progress of the water (increasing the amount of heat transfer).

2. Splash-fill causes the flowing water to cascade through successive elevations of parallel "splash bars." Equally important is the increased time of air-water contact brought about by repeated interruption of the water's flow progress.

3. Film-fill has gained prominence in the cooling tower industry because of its ability to expose greater water surface within a given packed volume.

31

Cooling Tower

Energy Efficiency opportunities in cooling tower Selecting a cooling tower

Depending on relationship between Approach and wet bulb temperature. Use drift eliminators to minimise drift loss

Fills

	Splash Fill	Film Fill	Low Clog Film Fill
Possible L/G Ratio	1.1 – 1.5	1.5 – 2.0	1.4 - 1.8
Effective Heat Exchange Area	$30 - 45 \text{ m}^2/\text{m}^3$	150 m ² /m ³	$85 - 100 \text{ m}^2/\text{m}^3$
Fill Height Required	5 – 10 m	1.2 – 1.5 m	1.5 – 1.8 m
Pumping Head Requirement	9 – 12 m	5 – 8 m	6 – 9 m
Quantity of Air Required	High	Much low	Low

Splash Fill

Film Fill

33

Cooling Tower

Splash Film Installed

Film Fill Installed

Cooling Tower

Fans and Motors

1.Fan must overcome system resistance, pressure loss : impacts electricity use

2.Fan efficiency depends on blade profile

Replace metallic blades with FRP blades (15-20% energy saving potential)

3.Use blade with aerodynamic profile (Fan efficiency 85-92%)

4.Use IE3 premiu standard motors for cooling tower fan motors (3-6% energy saving potential) 35

Cooling Tower

Temperature control automation for cooling tower

Cooling Tower

Induced Draft Cooling Tower

Forced Draft Cooling Tower

37

Vivek Sharma Associate Fellow +91 9850366248 Vivek.sharma@teri.res.in

Introduction

Reciprocating air compressor

Compressed air systems are quite inefficient and only 10-30% of energy reaches the point of end-use

Source: Compressed air system, Bureau of Energy Efficiency

Type of air compressors

Screw air compressor

Summarizing understanding of compressed air system

- Air compressor converts atm air into pressurized air
- Receiver tanks used for storage
- Dryers used for removing water vapours
- Filters used for cleaning or removing any particles
- Pipes used for transporting
- Valves used for control
- Pressure gauges used for monitoring pressure levels
- Flow meters used for monitoring volume

Presentation by Chetankumar Sangole, TERI

- » Pressure settings for reciprocating, screw type (energy savings 8 to 16 %)
- » Cool & fresh air at suction (energy savings 3%)
- » Air leakages reduction (energy savings 10 to 40 %)
- » Effective use of compressed air (energy savings 3 to 7%)
- » Pipe sizing & design (savings 7 to 20 %)
- » Type of air compressor and overall condition (savings 7 to 15 %)
- » Inverter type (VFD driven) air compressor (savings | | to 43 %)

Pressure setting optimization:

Air compressor location

- Proper Ventilation
- Dust free location
- Platform for Machine

Presentation by Chetankumar Sangole, TERI

- Proper Ducts for machines
- Air filters on windows

Notes for Duct Installation Work Provide a suction port low on the wall on the opposite side of the discharge port. Be careful that the discharge port and suction port are NOT placed on theSmooth air flow Appropriate cooling same side. In such a case, the room will not be ventilated at all. Temperature 4 n increase trouble due to shortcut 6 It's hot Air will not be discharged properly, leading to a failure. The same rule applies when air is discharged through a duct using a blower or ventilator. Even with forced exhaust, if ducts are combined Be sure to provide a separate discharge into a single duct, balance will not be maintained. Overflowing discharge air may be taken into the duct for each compressor. Do not share a discharge duct for 2 or 3 compressors. neighbor machine. 0 \rightarrow × -XX x x Air is not discharged! Air is not taken in! It's hot! Improved exhaust system 0 0 0 Î FAN ×х XX Exhaustion impossible It is an open room; therefore, the existing exhaust fan does not demonstrate any exhaust capacity. If a screw type is used, please install an exhaust air duct as shown in the . figure below. Increase in the compressor room temperature will . result in the degraded compressor performance For example, a temperature increase of 3 deg. C. will degrade the compressor's performance by 1%. If the suction pressure drops; the efficiency of the compressor will also be reduced. 14

Pressure loss

To achieve a higher rate of energy saving, select a pipe having a diameter one size larger than the compressor's discharge pipe diameter. Also, select air dryers and filters having a capacity one size larger.

Contents of Improvement Measures - Examination of Piping Work

Example of pipes having many valves or bends generates resistance, causing pressure loss.
Change the type of the valves (to the one with low resistance) or reduce bends as much as possible

- A pipe narrowed immediately after the air dryer. Generates resistance, causing pressure loss.
- A riser pipe. Causes a backward flow of condensate, leading to an increasing number of mechanical troubles.

Examples of problematic piping

- Drain trap attached just behind the compressor.
- Clogging of the pipe may be caused.
- Also, it increases the resistance at the immediate back of the compressor, which not only causes energy loss but also makes control difficult.

- Rust of receiver tank and internal corrosion.
- Internal resistance increases.
- It is recommended that a receiver tank with internal treatment with epoxy or similar be selected.

- Rubber hose connected from the compressor to the discharge pipe.
- It causes a large internal resistance and is inappropriate in terms of energy saving.
- Rubber hoses generate resistance higher by 20% or more than steel pipes and are not inappropriate.

Examples of recommended piping

Provide a drain plug for a riser pipe.

Large-bore pipe and receiver tank with adequate capacity

Recommended collecting pipe

Riser pipe installed from above

Recommended equipment and pipe flow

Select dos & don'ts – air compressor area

Setting Type	Collective	Independent		
Daily Maintenance	Easy	Need to assign staff for each line		
Regular maintenance	Easy	Need maintenance in each line		
Pressure flexibility	Need to operate with the highest pressure equipment (Some loss)	Able to apply appropriate pressure for each piece of equipment (Min. loss)		
Pressure loss	Some Piping tends to be long	Small Piping can be short Adjustment can be made in each line		
Air leak	Affects whole air supply system	Affects only line with the leakage		
Multi-unit Control	Available	Unavailable		

Energy saving can be made using inverter compressor for both collective & independent settings.

- 1. Collective setting: Inverter compressor absorbs load fluctuation
- 2. Independent setting: Easy to accomplish energy saving

Presentation by Chetankumar Sangole, TERI

Presentation by Chetankumar Sangole, TERI

Air compressor

Base case				
Before Air Manager	Total run hr/day	Off time hrs	Total time hr/day	Energy consumption (kWh/day)
Screw compressor (45 kW)	16	0.7	16.7	764
Screw compressor (30 kW)	7	7.7	14.7	154
Screw compressor (22 kW)	14	7	21	302
		Total		1220

After Air				Per day energy	
Manager	Total Run hrs	Off time hrs	Total Time hrs	h	A Property of the
Screw compressor					A REAL PROPERTY AND INC.
(45 kW)	10	13.5	23.5	495	
Screw compressor (30 kW)	11	12.6	23.6	301	
Screw compressor (22 kW)	17	6	23	331	
		Total		1127	

Estimated energy saving: 27685 kWh/annum

Replacement of existing screw air compressor with new EE screw air compressor with VFD and Permanent Magnet Synchronous (PMSN) motor

Implementation- Case Studies

Replacement of existing screw air compressor with new EE screw air compressor with VFD and Permanent Magnet Synchronous (PMSN) motor

Implementation- Case Studies

Arresting the air leakages in the compressed air distribution network in the plant (use of crimped hose joints)

The Energy and Resources Institute

Creating Innovative Solutions for a Sustainable Future

www.sameeeksha.org

For any information, please contact

Nilesh Shedge-9978601047 (nilesh.shedge@teri.res.in/nil.shedge@gmail.com)

